DATE

PERIOD

Unit 1, Lesson 5: Bases and Heights of Parallelograms

1. Select all parallelograms that have a correct height labeled for the given base.

2. The side labeled b has been chosen as the base for this parallelogram.

Draw a segment showing the height corresponding to that base.

Any segment that is perpendicular to the base

3. Find the area of each parallelogram.

4. If the side that is 6 units long is the base of this parallelogram, what is its corresponding height?

picture on back

NAME

this is perpendicular to the base of 6

- A. 6 units
- B. 4.8 units
- 4 units
- D. 5 units

Find the area of each parallelogram.

6. Do you agree with each of these statements? Explain your reasoning.

a. A parallelogram has six sides.

No-has 4 sides

b. Opposite sides of a parallelogram are parallel. $\frac{1}{2}$

- c. A parallelogram can have one pair or two pairs of parallel sides. No, needs two pair

 d. All sides of a parallelogram have the same length. No, pairs of pair

 e. All angles of a parallelogram have the same measure
- e. All angles of a parallelogram have the same measure.

No, opposite angles are the same.

(from Unit 1, Lesson 4)

Challenge 7. A square with an area of 1 square meter is decomposed into 9 identical small squares. Each small square is decomposed into two identical triangles. Draw a picture!

a. What is the area, in square meters, of 6 triangles? If you get stuck, draw a diagram.

each $\triangle = \frac{1}{18}$ of a meter $\frac{1}{18}$ $\frac{6}{9} = \frac{1}{18} = \frac{1}{3}$ M. b. How many triangles are needed to compose a region that is $1\frac{1}{2}$ square meters?

18+9=27 triangles